Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition
نویسندگان
چکیده
We report the first self-catalyzed growth of high-quality GaSb nanowires on InAs stems using metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates. To achieve the growth of vertical InAs/GaSb heterostructure nanowires, the two-step flow rates of the trimethylgallium (TMGa) and trimethylantimony (TMSb) are used. We first use relatively low TMGa and TMSb flow rates to preserve the Ga droplets on the thin InAs stems. Then, the flow rates of TMGa and TMSb are increased to enhance the axial growth rate. Because of the slower radial growth rate of GaSb at higher growth temperature, GaSb nanowires grown at 500 °C exhibit larger diameters than those grown at 520 °C. However, with respect to the axial growth, due to the Gibbs-Thomson effect and the reduction in the droplet supersaturation with increasing growth temperature, GaSb nanowires grown at 500 °C are longer than those grown at 520 °C. Detailed transmission electron microscopy (TEM) analyses reveal that the GaSb nanowires have a perfect zinc-blende (ZB) crystal structure. The growth method presented here may be suitable for other antimonide nanowire growth, and the axial InAs/GaSb heterostructure nanowires may have strong potential for use in the fabrication of novel nanowire-based devices and in the study of fundamental quantum physics.
منابع مشابه
Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition
We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown n...
متن کاملSelf-catalyzed Growth of InAs Nanowires on InP Substrate
We report on the self-catalyzed growth of InAs nanowires on InP substrate by metal-organic chemical vapor deposition. At a moderate V/III ratio, tapered nanowires are obtained, suggesting a strong surface diffusion effect. Dense twin faults are observed perpendicular to the nanowire growth direction due to the fluctuation of In atoms in the droplet originating from the surface diffusion effect....
متن کاملUltrahigh-density silicon nanobridges formed between two vertical silicon surfaces
We report simultaneous lateral growth of a high density of highly oriented, metal-catalyzed silicon nanowires on a patterned silicon substrate and bridging of nanowires between two vertical silicon sidewalls, which can be developed into electrodes of an electronic device. After angled deposition of catalytic metal nanoparticles on one of two opposing vertical silicon surfaces, we used a metal-c...
متن کاملNanowire Growth and Device Fabrication n-type InAs NWs are grown on Si <111> by selective area epitaxy within e-beam patterned SiOx openings by metal-organic chemical vapor deposition
In this paper we present vertical tunnel diodes and tunnel FETs (TFETs) based on III-V–Si nanowire heterojunctions. We experimentally demonstrate InAs–Si Esaki tunnel diodes with record high currents of 6 MA/cm at 0.5 V in reverse bias. Furthermore, we have fabricated vertical InAs–Si nanowire TFETs with gate-all-around architecture and high-k dielectrics. The InAs–Si combination allows achievi...
متن کاملDirect heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection.
Catalyst-free, direct heteroepitaxial growth of vertical InAs nanowires on Si(111) substrates was accomplished over a large area by metal-organic chemical vapor deposition. Nanowires showed very uniform diameters and a zinc blende crystal structure. The heterojunctions formed at the interface between the n-type InAs nanowires and the p-type Si substrate were exploited to fabricate vertical arra...
متن کامل